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Continuous function

Definition 1.

Let X and Y be topological spaces.

A function f : X → Y is continuous if for each open subset V of Y ,

the set f −1(V ) is open in X .
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Lemma A.

Let f : X → Y .

Let B be a basis for the topology on Y and

let S be a subbasis for the topology on Y .

(1) f is continuous if f −1(B) is open in X for each B ∈ B.

(2) f is continuous if f −1(S) is open in X for each S ∈ S.
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Theorem 1. Let X and Y be topological spaces.

Let f : X → Y . Then the following are equivalent:

(1) f is continuous.

(2) For every subset A of X , one has f (A) ⊂ f (A).

(3) For every closed subset B of Y , the set f −1(B) is closed in X .

(4) For each x ∈ X and each neighborhood V of f (x), there is a

neighborhood U of x such that f (U) ⊂ V .
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Homeomorphism

Definition 2.

Let X and Y be topological spaces.

Let f : X → Y be a bijection (one to one and onto).

If both f and f −1 : Y → X are continuous.

Then f is a homeomorphism.
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Topological imbedding or imbedding

Definition 3.

Let f : X → Y be an injective (one to one) continuous map.

Let Z = f (X ) (so that f is onto Z ) be considered a subspace of Y .

Let f ′ : X → Z be the restriction of f to Z (so f ′ is a bijection).

If f ′ is a homeomorphism of X with Z .

Then f : X → Y is a topological imbedding of X in Y .
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Rules for Constructing Continuous Functions

Theorem 2.

Let X ,Y , and Z be topological spaces.

(a) (Constant Function)

If f : X → Y maps all of X into a single point y0 ∈ Y ,

then f is continuous.

(b) (Inclusion)

If A is a subspace of X , then the inclusion function j : A→ X

is continuous.
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(c) (Composites)

If f : X → Y and f : X → Y are continuous, then the map

g ◦ f : X → Y is continuous.

(d) (Restricting the Domain)

If f : X → Y is continuous and if A is a subspace of X , then the

restricted function f | A : A→ Y is continuous.
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(e) (Restricting or Expanding the Range) let f : X → Y .

If X is a subspace of Y containing the image set f (X ), then the

function g : X → Z obtained by restricting the range of f is continuous.

If Z is a space having Y as a subspace, then the functions

h : X → Z obtained by expanding the range of f is continuous.

(f) (Local Formulation of Continuity) The map f : X → Y is continuous.

If X can be written as the union of open sets Uα such that

f | Uα is continuous for each α.
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The Pasting Lemma for Closed Sets

Theorem 3.

Let X = A ∪ B where A and B are closed sets in X .

Let f : A→ Y and g : B → Y be continuous.

If f (x) = g(x) for all x ∈ A ∩ B, then f and g combine (or paste) to give

a continuous function h : X → Y defined by setting

h(x) = f (x) if x ∈ A and h(x) = g(x) if x ∈ B.
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Maps into Products

Theorem 4.

Let f : A→ X × Y be given by the equation f (a) = (f1(a), f2(a))

where f1 : A→ X and f2 : A→ Y .

Then f is continuous if and only if the functions f1 and f2 are continuous.
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The Product Topology

Definition 3.

Let J be an index set.

Given a set X , define a J-tuple of elements of X to be

a function x : J → X .

If α is an element of J , we denote the value of x at α by xα

rather than x(α) called the αth coordinate of x .

We often denote x as (xα)α∈J and denote the set of all

J-tuples of elements of X as X J .
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The Metric Topology

Definition 4.

A metric on a set X is a function d : X × X → R having

the following properties:

(1) d(x , y) ≥ 0 for all x , y ∈ X and d(x , y) = 0 if and only if x = y .

(2) d(x , y) = d(y , x) for all x , y ∈ X .

(3) (The Triangle Inequality) d(x , y) + d(y , z) ≥ d(x , z) for all x , y , z ∈ X .
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Metric topology

Definition 5.

If d is a metric on X then the collection of all ε- balls Bd (x , ε) for x ∈ X

(where Bd (x , ε) = {y | d(x , y) < ε} and ε > 0)

is a basis for a topology on X , called the

metric topology induced by d .
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Lemma A.

Let Bd (x , ε) be a ε- ball in a topological space with

the metric topology and metric d .

Let y ∈ Bd (x , ε).

Then there is δ > 0 such that Bd (y , δ) ⊂ Bd (x , ε).
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Lemma B.

A set U is open in the metric topology induced by metric d

if and only if for each y ∈ U there is a δ > 0 such that

Bd (y , δ) ⊂ U.
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Definition 6.

Let X be a topological space.

X is said to be metrizable if there exists a metric d on a set X

that induces the topology of X .

A metric space is a metrizable space X with a specific metric d

that gives the topology of X .
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Definition 7.

Let X be a metric space with metric d .

A subset A of X is bounded if there is some number M such that

d(a1, a2) ≤ M for every pair a1, a2 ∈ A.

If A is bounded and nonempty, then the diameter of A is

diam(A) = sup { d(a1, a2) | a1, a2 ∈ A }.
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Theorem 5.

Let X be a metric space with metric d .

Define d : X × X → R by

d(x , y) = min {d(x , y), 1}.

Then d is a metric that induces the same topology as d .
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Definition 8.

Given x = (x1, x2, ..., xn) ∈ Rn, define the norm of x as

|| x ||= (x1
2 + x2

2 + . . .+ xn
2) 1/2.

Define the Euclidean metric on Rn as

d(x , y) = || x − y ||= ((x1− y1) 2 + (x2− y2) 2 + . . .+ (xn − yn) 2) 1/2.

Define the square metric ρ as

ρ(x , y) = max { |x1 − y1|, |x2 − y2|, . . . , |xn − yn| }.
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Lemma 2.

Let d and d ′ be two metrics on the set X .

Let τ and τ ′ be the topologies they induce, respectively.

Then τ ′ is finer than τ if and only if for each x ∈ X and each ε > 0,

there exists a δ > 0 such that B′d (x , δ) ⊂ Bd (x , ε).

Dr S. Srinivasan (PAC) Unit-2 Continuous Functions 21 / 32



Theorem 3.

The topologies on Rn induced by the Euclidean metric d and

the square metric ρ are the same as the product topology on Rn.
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Theorem 4.

The uniform topology on RJ is finer than the product topology and

coarser than the box topology.

These three topologies are all different if J is infinite.
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Theorem 5.

Let d(a, b) = min {|a − b|, 1} be the standard bounded metric on R.

If x and y are two points in Rω = Rn, define

D(x , y) = sup i∈N { d(xi ,yi )
i }

Then D is a metric that induces the product topology on Rω.

That is, Rω under the product topology is metrizable.
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Metric topology continued

Theorem 1.

Let f : X → Y . Let X and Y be metrizable with metrics dX and dY ,

respectively. Then continuity of f is equivalent to the requirement that

given x ∈ X and given ε > 0, there exists δ > 0 such that

dX (x , y) < δ ⇒ dY (f (x), f (y)) < ε.
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The Sequence Lemma

Lemma 2.

Let X be a topological space. Let A ⊂ X .

If there is a sequence of points of A converging to x , then x ∈ Ā.

If X is metrizable and x ∈ Ā then there is a sequence {xn} ⊂ A

such that {xn} → x .
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Theorem 3.

Let f : X → Y . If f is continuous then for every convergent sequence

{xn} → x in X , the sequence {f (xn)} → f (x) in Y .

If X is metrizable and for any sequence {xn} → x in X , we have

{f (xn)} → f (x) in Y then f is continuous.
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Definition 9.

A topological space X is said to have a countable basis at the point x

if there is a countable collection {Un}n∈N of neighborhoods of x

such that any neighborhood U of x contains at least one of the sets Un.

A space that has a countable basis at each of its points is said to satisfy

the first countability axiom.
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Lemma 4.

The addition, subtraction, and multiplication operations are continuous

from R× R→ R, and the quotient operation is a continuous function

from R× (R− {0}) into R.
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Theorem 5.

If X is a topological space and if f , g : X → R are continuous,

then f + g , f − g , and f ◦ g are continuous.

If g(x) 6= 0 for all x ∈ X then f /g is continuous.
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Definition 10.

Let f : X → Y be a sequence of functions from set X to metric space Y .

let d be the metric for Y .

The sequence of functions {fn} converges uniformly to the function

f : X → Y if given ε > 0 there is n ∈ N such that

d(fn(x), f (x)) < ε for all n > N and for all x ∈ X .
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Uniform Limit Theorem

Theorem 6.

Let fn : X → Y be a sequence of continuous functions from

the topological space X to the metric space Y .

If {fn} converges uniformly to f , then f is continuous.
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